Abstract

The prediction of the bow shock location is a proof of our understanding of the processes governing the solar wind – magnetosphere interaction. However, the models describing the bow shock location as a function of upstream parameters are based on a statistical processing of bow shock crossings observed by a single spacecraft. Such crossings locate the bow shock in motion, i.e., in a non-equilibrium state and this fact can be a source of significant errors. We have carefully analyzed a long interval of simultaneous observations of the bow shock and magnetopause and another interval of bow shock observations at two well-separated points. Our results suggest that often a small-scale deformation of the bow shock front due to magnetosheath fluctuations is the most appropriate interpretation of observations. Since the low-frequency magnetosheath variations exhibit largest amplitudes, a simultaneous bow shock displacement over a distance of 10–15 R E can be observed. We suggest that bow shock models can be probably improved if the tilt angle would be implemented as a parameter influencing the bow shock location in high latitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.