Abstract
In this work, we study and quantify properties of strong-field small-scale convection and compare observed properties with those predicted by numerical simulations. We analyze spectropolarimetric 630.25 nm data from a unipolar ephemeral region near sun center. We use line-of-sight velocities and magnetic field measurements obtained with Milne-Eddington inversion techniques along with measured continuum intensities and Stokes V amplitude asymmetry at a spatial resolution of 0.15 arcseconds to establish statistical relations between the measured quantities. We also study these properties for different types of distinct magnetic features, such as micropores, bright points, ribbons, flowers and strings. We present the first direct observations of a small-scale granular magneto-convection pattern within extended regions of strong (more than 600 G average) magnetic field. Along the boundaries of the flux concentrations we see mostly downflows and asymmetric Stokes V profiles, consistent with synthetic line profiles calculated from MHD simulations. We note the frequent occurrence of bright downflows along these boundaries. In the interior of the flux concentrations, we observe an up/down flow pattern that we identify as small-scale magnetoconvection, appearing similar to that of field-free granulation but with scales 4 times smaller. Measured RMS velocities are 70% of those of nearby field-free granulation, even though the average radiative flux is not reduced. The interiors of these flux concentrations are dominated by upflows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.