Abstract
Fine scale layering of haze and composition in Titan’s stratosphere and mesosphere was investigated using visible/UV images from Cassini’s Imaging Science Sub-system (ISS) and IR spectra from Cassini’s Composite Infra-Red Spectrometer (CIRS). Both ISS and CIRS independently show fine layered structures in haze and composition, respectively, in the 150–450 km altitude range with a preferred vertical wavelength of around 50 km. Layers are most pronounced around the north polar winter vortex, although some weaker layers do exist at more southerly latitudes. The amplitude of composition layers in each trace gas profile is proportional to the relative enrichment of that species in the winter polar vortex compared to equatorial latitudes. As enrichment is caused by polar subsidence, this suggests a dynamical origin. We propose that the polar layers are caused by cross-latitude advection across the vortex boundary. This is analogous to processes that lead to ozone laminae formation around Earth’s polar vortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.