Abstract
Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTXs) produced by endemic species of Dinophysis, mainly D. acuta and D. acuminata, threaten public health and negatively impact the shellfish industry worldwide. Despite their socioeconomic impact, research on the environmental drivers of DSP outbreaks in the Chilean fjords is scanty. From 22 to 24 March 2017, high spatial–temporal resolution measurements taken in Puyuhuapi Fjord (Northern Patagonia) illustrated the short-term (hours, days) response of the main phytoplankton functional groups (diatoms and dinoflagellates including toxic Dinophysis species) to changes in water column structure. Results presented here highlight the almost instantaneous coupling between time–depth variation in density gradients, vertical shifts of the subsurface chlorophyll maximum, and its evolution to a buoyancy-driven thin layer (TL) of diatoms just below the pycnocline the first day. A second shallower TL of dinoflagellates, including Dinophysis acuta, was formed on the second day in a low-turbulence lens in the upper part of the pycnocline, co-occurring with the TL of diatoms. Estimates of in situ division rates of Dinophysis showed a moderate growth maximum, which did not coincide with the cell density max. This suggests that increased cell numbers resulted from cell entrainment of off-fjord populations combined with in situ growth. Toxin profiles of the net tow analyses mirrored the dominance of D. acuminata/D. acuta at the beginning/end of the sampling period. This paper provides information about biophysical interactions of phytoplankton, with a focus on Dinophysis species in a strongly stratified Patagonian fjord. Understanding these interactions is crucial to improv predictive models and early warning systems for toxic HABs in stratified systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.