Abstract

This paper addresses attitude consensus for a formation of small satellites where each satellite relies on internal oscillating-mass actuators. Unlike traditional flywheel systems, the actuators considered in this work cannot perform unrestricted rotations. The rotational stroke of each actuator on the ith satellite is limited to [−αi,αi] rad, where αi>0. We develop and analyze two feedback control methods for attitude consensus using limited-stroke oscillating-mass actuators. The first algorithm achieves local attitude consensus for the case where each satellite uses relative-attitude feedback of its neighbor satellites. The second algorithm achieves almost global attitude consensus for the case where each satellite uses absolute-attitude feedback of its neighbor satellites. Both methods use control signals that are continuous and piecewise sinusoidal but whose derivatives can contain discontinuities. The main results show that each method achieves consensus and that the strict actuator stroke constraint is satisfied. Each method is demonstrated by a numerical simulation of a small-satellite formation in deep space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.