Abstract
ABSTRACTWhen performing system-level developmental testing, time and expenses generally warrant a small sample size for failure data. Upon failure discovery, redesigns and/or corrective actions can be implemented to improve system reliability. Current methods for estimating reliability growth, namely the Crow (AMSAA) growth model, stipulate that parameter estimates have a great level of uncertainty when dealing with small sample sizes. For purposes of handling limited failure data, we propose the use of a modified GM(1,1) model to predict system reliability growth parameters and investigate how parameter estimates are affected by systems whose failures follow a poly-Weibull distribution. Monte-Carlo simulation is used to map the response surface of system reliability, and results are used to compare the accuracy of the modified GM(1,1) model to that of the AMSAA growth model. It is shown that with small sample sizes and multiple failure modes, the modified GM(1,1) model is more accurate than the AMSAA model for prediction of growth model parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.