Abstract
Recent interest in statistical inference for panel data has focused on the problem of unobservable, individual-specific, random effects and the inconsistencies they introduce in estimation when they are correlated with other exogenous variables. Analysis of this problem has always assumed the variance components to be known. In this paper, we re-examine some of these questions in finite samples when the variance components must be estimated. In particular, when the effects are uncorrelated with other explanatory variables, we show that (i) the feasible Gauss-Markov estimator is more efficient than the within groups estimator for all but the fewest degrees of freedom and its variance is never more than 17% above the Cramer-Rao bound, (ii) the asymptotic approximation to the variance of the feasible Gauss-Markov estimator is similarly within 17% of the true variance but remains significantly smaller for moderately large samples sizes, and (iii) more efficient estimators for the variance components do not necessarily yield more efficient feasible Gauss-Markov estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.