Abstract

Small RNAs associated with post-transcriptional gene silencing were first discovered in plants in 1999. Although this study marked the beginning of small RNA biology in plants, the sequence of the Arabidopsis genome and related genomic resources that were soon to become available to the Arabidopsis community launched the research on small RNAs at a remarkable pace. In 2000, when the genetic blueprint of the first plant species was revealed, the tens of thousands of endogenous small RNA species as we know today remained hidden features of the genome. However, the subsequent 10 years have witnessed an explosion of our knowledge of endogenous small RNAs: their widespread existence, diversity, biogenesis, mode of action and biological functions. As key sequence-specific regulators of gene expression in the nucleus and the cytoplasm, small RNAs influence almost all aspects of plant biology. Because of the extensive conservation of mechanisms concerning the biogenesis and molecular actions of small RNAs, research in the model plant Arabidopsis has contributed vital knowledge to the small RNA field in general. Our knowledge of small RNAs gained primarily from Arabidopsis has also led to the invention of effective gene knock-down technologies that are applicable to diverse plant species, including crop plants. Here, I attempt to recount the developments of the small RNA field in the pre- and post-genomic era, in celebration of the 10th anniversary of the completion of the first plant genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.