Abstract

BackgroundSugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. MicroRNAs (miRNAs) play an important role in regulating plant responses to biotic stress. The present study was the first to use two sugarcane genotypes, YA05-179 (smut-resistant) and ROC22 (smut-susceptible), to identify differentially expressed miRNAs in sugarcane challenged with S. scitamineum by using high-throughput sequencing.ResultsThe predicted target gene number corresponding to known differentially expressed miRNAs in YA05-179 was less than that in ROC22, however most of them were in common. Expression of differential miRNAs under S. scitamineum challenge was mostly downregulated, with similar trends in the two varieties. Gene ontology (GO) analysis showed that the target gene classification of known miRNAs was similar to that of the newly identified miRNAs. These were mainly associated with cellular processes and metabolic processes in the biological process category, as well as combination and catalytic activity in the molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these predicted target genes involved in a series of physiological and biochemical pathways or disease resistance-related physiological metabolism and signal transduction pathways, suggesting that the molecular interaction mechanism between sugarcane and S. scitamineum was a complex network system. These findings also showed certain predicted target genes of miR5671, miR5054, miR5783, miR5221, and miR6478 play roles in the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Quantitative real-time PCR (qRT-PCR) analysis showed that majority of the known miRNAs and its predicted target genes followed a negatively regulated mode. Seven out of eight predicted target genes showed identical expression after 12 h treatment and reached the highest degree of matching at 48 h, indicating that the regulatory role of miRNAs on the target genes in sugarcane was maximized at 48 h after S. scitamineum challenge.ConclusionsTaken together, our findings serve as evidence for the association of miRNA expression with the molecular mechanism underlying the pathogenesis of sugarcane smut, particularly on the significance of miRNA levels in relation to the cultivation of smut-resistant sugarcane varieties.

Highlights

  • Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content

  • This study focused on the interaction of two different sugarcane genotypes YA05-179 and ROC22 inoculated with S. scitamineum 48 h by conducting differential miRNA expression analysis and quantitative real-time PCR validation to identify and analyze the expression patterns of miRNA in sugarcane during S. scitamineum challenge, as well as functional analysis to predict its target genes

  • These findings indicated that S. scitamineum induces changes in the expression pattern of small RNA (sRNA) in both sugarcane genotypes

Read more

Summary

Introduction

Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. Borrás et al [5] used cDNA-amplified fragment length polymorphism (cDNA-AFLP) technology to study the differential gene expression of sugarcane after the development of smut disease and screened 62 differentially expressed genes, including 52 upregulated genes and ten downregulated genes. Among these 52 upregulated genes, 19 were directly related to biological functions such as defense and signal transmission. By RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ), the gene and protein expression profiles of sugarcane in response to the infection of S. scitamineum were constructed, and its relationship with the mechanism of interaction between sugarcane and S. scitamineum was identified [7]. No mechanistic analysis of microRNA (miRNA) differential expression and functional analysis of the potential target gene of sugarcane under S. scitamineum challenge has been conducted to date

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.