Abstract

BackgroundThe mechanisms through which Mycobacterium tuberculosis evades immune surveillance during tuberculosis (TB) infection remain complex. Previous studies have found that Mycobacteria can manipulate the miRNAs of host cells to promote their survival during host-pathogen interactions, and most of these effects occur at the cellular miRNA level. We attempted to investigate the possible related mechanisms at the exosomal miRNA level.ResultsHigh-throughput sequencing revealed that Bacillus Calmette-Guérin (BCG) infection could alter the composition of the macrophage exosome content, and the expression levels of miRNAs in exosomes derived from the cell culture media of macrophages showed significant differences between the BCG-infected and non-infected groups. Compared with the non-infected group, 20 exosomal miRNAs were up-regulated and 7 exosomal miRNAs were down-regulated in the infection group (p < 0.05), of which mmu-miR-27b-3p, mmu-miR-93-5p, mmu-miR-25-3p, mmu-miR-1198-5p, mmu-let-7c-5p and let-7a-5p were significantly up-regulated. A bioinformatic analysis indicated that these differentially expressed exosomal miRNAs were involved in multiple biological processes and pathways. The target genes of top six miRNAs in up-regulated groups were positively correlated with the regulation of apoptosis.ConclusionsThe expression profile of miRNA in exosomes derived from macrophage were altered after Mycobacterium Bovis Bacillus Calmette-Guérin infection, and the differentially expressed miRNAs were involved in multiple biological processes and signalling pathways. The top six up-regulated miRNAs and their targeted genes were predominantly correlated with the regulation of apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.