Abstract

Environmental exposure to fibers of respirable size has been identified as a risk for public health. Experimental evidence has revealed that a variety of fibers, including fluoro-edenite, can develop chronic respiratory diseases and elicit carcinogenic effects in humans. Fluoro-edenite (FE) is a silicate mineral first found in Biancavilla (Sicily, Italy) in 1997. Environmental exposure to its fibers has been correlated with a cluster of malignant pleural mesotheliomas. This neoplasm represents a public health problem due to its long latency and to its aggression not alerted by specific symptoms. Having several biomarkers providing us with data on the health state of those exposed to FE fibers or allowing an early diagnosis on malignant pleural mesothelioma, still asymptomatic patients, would be a remarkable goal. To these purposes, we reported the miRNA transcriptome in human normal mesothelial cell line (MeT-5A) and in the human malignant mesothelioma cell line (JU77) exposed and not exposed to FE fibers. The results showed a difference in the number of deregulated miRNAs between tumor and nontumor samples both exposed and not exposed to FE fibers. As a matter of fact, the effect of exposure to FE fibers is more evident in the expression of miRNA in the tumor samples than in the nontumor samples. In the present paper, several pathways involved in the pathogenesis of malignant pleural mesothelioma have been analyzed. We especially noticed the involvement of pathways that have important functions in inflammatory processes, angiogenesis, apoptosis, and necrosis. Besides this amount of data, further studies will be designed for the selection of the most significant miRNAs to test and validate their diagnostic potential, alone or in combination with other protein biomarkers, in high-risk individuals' liquid biopsy to have a noninvasive tool of diagnosis for this neoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.