Abstract
The plasma level of apolipoprotein B (apoB) is among the strongest risk factors for coronary artery disease. Microsomal triglyceride transfer protein (MTP) plays a key role in the lipidation of nascent apoB and the secretion of apoB-containing lipoproteins enriched with triglycerides and is thus a promising target for the treatment of hyperlipidemia. Yet, the development of MTP inhibitors to lower plasma lipid concentrations has been hindered by adverse effects on hepatic steatosis. A study recently published in Nature Medicine identifies microRNA-30c (miR-30c) as a potent repressor of MTP that controls plasma apoB-containing lipoprotein levels, in addition to decreasing hepatic lipid synthesis through direct targeting of lysophosphatidylglycerol acyltransferase 1 (LPGAT1). These findings identify miR-30c as a novel therapeutic target that coordinately reduces lipid biosynthesis and lipoprotein secretion to suppress circulating apoB lipoproteins, while sparing the liver from steatosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.