Abstract

BackgroundNearly all California casinos currently allow smoking, which leads to potentially high patron exposure to secondhand tobacco smoke pollutants. Some argue that smoking restrictions or bans would result in a business drop, assuming > 50% of patrons smoke. Evidence in Nevada and responses from the 2008 California tobacco survey refute this assertion. The present study investigates the proportion of active smokers in southern California tribal casinos, as well as occupancy and PM2.5 levels in smoking and nonsmoking sections.MethodsWe measured active-smoker and total-patron counts during Friday or Saturday night visits (two per casino) to smoking and nonsmoking gaming areas inside 11 southern California casinos. We counted slot machines and table games in each section, deriving theoretical maximum capacities and occupancy rates. We also measured PM2.5 concentrations (or used published levels) in both nonsmoking and smoking areas.ResultsExcluding one casino visit with extremely high occupancy, we counted 24,970 patrons during 21 casino visits of whom 1,737 were actively smoking, for an overall active- smoker proportion of 7.0% and a small range of ~5% across casino visits (minimum of 5% and maximum of 10%). The differences in mean inter-casino active-smoker proportions were not statistically significant. Derived occupancy rates were 24% to 215% in the main (low-stakes) smoking-allowed slot or table areas. No relationship was found between observed active-smoker proportions and occupancy rate. The derived maximum capacities of nonsmoking areas were 1% to 29% of the overall casino capacity (most under 10%) and their observed occupancies were 0.1 to over 3 times that of the main smoking-allowed casino areas. Seven of twelve visits to nonsmoking areas with no separation had occupancy rates greater than main smoking areas. Unenclosed nonsmoking areas don’t substantially protect occupants from PM2.5 exposure. Nonsmoking areas encapsulated inside smoking areas or in a separate, but unenclosed, area had PM2.5 levels that were 10 to 60 μg/m3 and 6 to 23 μg/m3 higher than outdoor levels, respectively, indicating contamination from smoking.ConclusionsAlthough fewer than roughly 10% of casino patrons are actively smoking on average, these individuals substantially increase PM2.5 exposure for all patrons in smoking and unenclosed nonsmoking areas. Nonsmoking areas may be too inconvenient, small, or undesirable to serve a substantial number of nonsmoking patrons. Imposing indoor smoking bans, or contained smoking areas with a maximum capacity of up to 10% of the total patronage, would offer protection from PM2.5 exposures for nonsmoking patrons and reduce employee exposures.

Highlights

  • Most California casinos currently allow smoking, which leads to potentially high patron exposure to secondhand tobacco smoke pollutants

  • Conclusions: fewer than roughly 10% of casino patrons are actively smoking on average, these individuals substantially increase PM2.5 exposure for all patrons in smoking and unenclosed nonsmoking areas

  • Contained smoking areas with a maximum capacity of up to 10% of the total patronage, would offer protection from PM2.5 exposures for nonsmoking patrons and reduce employee exposures

Read more

Summary

Introduction

Most California casinos currently allow smoking, which leads to potentially high patron exposure to secondhand tobacco smoke pollutants. The present study investigates the proportion of active smokers in southern California tribal casinos, as well as occupancy and PM2.5 levels in smoking and nonsmoking sections. There are currently 63 tribal (Native American) casinos in California, which employ over 50,000 workers, with up to 10 more casinos under construction [1,2]. Close to one third of these casinos are located in populous southern California. Only one tribal casino in California is entirely smoke-free (Lucky Bear Casino). Patrons visiting tribal casinos are likely to receive exposure to secondhand tobacco smoke (SHS) pollutants, including airborne fine particles with diameters under 2.5 microns (PM2.5). Elevated concentrations of PM2.5 are a well-known indicator of the presence of SHS [3], and PM2.5 has its own wellestablished adverse health effects [4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call