Abstract

Current methods for Suzuki-Miyaura couplings of nontriflate phenol derivatives are limited by their intolerance of halides including aryl chlorides. This is because Ni(0) and Pd(0) often undergo oxidative addition of organohalides at a similar or faster rate than most Ar-O bonds. DFT and stoichiometric oxidative addition studies demonstrate that small phosphines, in particular PMe3, are unique in promoting preferential reaction of Ni(0) with aryl tosylates and other C-O bonds in the presence of aryl chlorides. This selectivity was exploited in the first Ni-catalyzed C-O-selective Suzuki-Miyaura coupling of chlorinated phenol derivatives where the oxygen-containing leaving group is not a fluorinated sulfonate such as triflate. Computational studies suggest that the origin of divergent selectivity between PMe3 and other phosphines differs from prior examples of ligand-controlled chemodivergent cross-couplings. PMe3 effects selective reaction at tosylate due to both electronic and steric factors. A close interaction between nickel and a sulfonyl oxygen of tosylate during oxidative addition is critical to the observed selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call