Abstract
Experiments have shown that the microwave ionization probability of a highly excited almost monodimensional hydrogen atom subjected to a microwave pulse sometimes grows in steps when the peak electric field of the pulse is increased. Classical pulsed simulations display the same steps, which have been traced to phase-space metamorphoses. Quantum numerical calculations again exhibit the same ionization steps. I show that the time-sequence of two level interactions, responsible for the observed steps in the quantum picture, is strictly related to the classical phase space structures generated by the above mentioned metamorphoses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.