Abstract

We study a reaction-diffusion evolution equation perturbed by a Gaussian noise. Here the leading operator is the infinitesimal generator of a $C_0$-semigroup of strictly negative type, the nonlinear term has at most polynomial growth and is such that the whole system is dissipative. The corresponding Itô stochastic equation describes a process on a Hilbert space with dissipative nonlinear, non globally Lipschitz drift and a Gaussian noise. Under smoothness assumptions on the nonlinearity, asymptotics to all orders in a small parameter in front of the noise are given, with uniform estimates on the remainders. Applications to nonlinear SPDEs with a linear term in the drift given by a Laplacian in a bounded domain are included. As a particular example we consider the small noise asymptotic expansions for the stochastic FitzHugh-Nagumo equations of neurobiology around deterministic solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.