Abstract

Severe acute respiratory syndrome (SARS) is an infectious disease caused by a novel human coronavirus. Currently, no effective antiviral agents exist against this type of virus. A cell-based assay, with SARS virus and Vero E6 cells, was developed to screen existing drugs, natural products, and synthetic compounds to identify effective anti-SARS agents. Of >10,000 agents tested, approximately 50 compounds were found active at 10 microM; among these compounds, two are existing drugs (Reserpine 13 and Aescin 5) and several are in clinical development. These 50 active compounds were tested again, and compounds 2-6, 10, and 13 showed active at 3 microM. The 50% inhibitory concentrations for the inhibition of viral replication (EC(50)) and host growth (CC(50)) were then measured and the selectivity index (SI = CC(50)/EC(50)) was determined. The EC(50), based on ELISA, and SI for Reserpine, Aescim, and Valinomycin are 3.4 microM (SI = 7.3), 6.0 microM (SI = 2.5), and 0.85 microM (SI = 80), respectively. Additional studies were carried out to further understand the mode of action of some active compounds, including ELISA, Western blot analysis, immunofluorescence and flow cytometry assays, and inhibition against the 3CL protease and viral entry. Of particular interest are the two anti-HIV agents, one as an entry blocker and the other as a 3CL protease inhibitor (K(i) = 0.6 microM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.