Abstract

We are interested in the free energies of transferring nonpolar solutes into aqueous NaCl solutions with salt concentrations upwards of 2 M, the Hofmeister regime. We use the semi-explicit assembly (SEA) computational model to represent these electrolyte solutions. We find good agreement with experiments (Setschenow coefficients) on 43 nonpolar and polar solutes and with TIP3P explicit-solvent simulations. Besides being much faster than explicit solvent calculations, SEA is more accurate than the PB models we tested, successfully capturing even subtle salt effects in both the polar and nonpolar components of solvation. We find that the salt effects are mainly due to changes in the cost of forming nonpolar cavities in aqueous NaCl solutions, and not mainly due to solute-ion electrostatic interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call