Abstract

Single stranded RNAs are biologically potent as they participate in various key cellular processes. The binding efficacy of two potent anticancer alkaloids, sanguinarine (here after SANG) and chelerythrine (here after CHEL), with single-stranded ribonucleic acids poly(rI), poly(rG), and poly(rC) were studied using spectroscopic and thermodynamic tools. Results reveal that both SANG and CHEL binds well with single stranded RNAs with affinity in the order poly(rI)>poly(rG)>poly(rC). CHEL showed slightly higher affinity compared to SANG with all the single stranded RNAs. Both SANG and CHEL showed association affinity of the lower 106 order with poly(rI), higher 105 order binding with poly(rG) and lower 105 order with poly(rC). The binding mode was partial intercalation due to the staking interaction between the bases and the alkaloids. The complexation of both the SANG and CHEL to the RNAs were mainly enthalpy driven and also favoured by entropy changes. Perturbation was observed in the RNA conformation due to binding of the alkaloids. In this present study we have deciphered the fundamental structural and calorimetric aspects of the interaction of the natural benzophenanthridine alkaloids with single stranded RNAs and these results may help to develop new generation alkaloid based therapeutics targeting single stranded RNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call