Abstract
Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3− and Cl− secretion, reduce airway surface liquid (ASL) pH, and impair respiratory host defenses in people with cystic fibrosis (CF) 1–3. Here we report that apical addition of an unselective ion channel-forming small molecule, amphotericin B (AmB), restored HCO3− secretion and increased ASL pH in cultured human CF airway epithelia. These effects required the basolateral Na+/K+ ATPase, indicating that apical AmB channels functionally interfaced with this driver of anion secretion. AmB also restored ASL pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with CF caused by different mutations, including ones that yield no CFTR, and increased ASL pH in CFTR-null pigs in vivo. Thus, unselective small molecule ion channels can restore CF airway host defenses via a mechanism that is CFTR-independent and therefore genotype-independent.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.