Abstract
Heat shock protein 27 (Hsp27) is an important member of the chaperone protein family and its overexpression promotes cancer cell survival. Here, we investigated the apoptosis inducer role of the J2 compound (Hsp27 inhibitor) in human ovarian cancer cell lines (SKOV3 and OVCAR-3). Cell proliferation was measured by MTT assay. The parameters of J2-Hsp27 interaction were determined with molecular docking calculation. The inhibitory effect of the J2 compound on Hsp27 chaperone activity was investigated by luciferase activity assay. Finally, the apoptotic inducer role of the J2 compound on SKOV3 and OVCAR-3 cells was determined by RT-PCR and caspase-3 activity assay. J2 compound decreased SKOV3 and OVCAR-3 cell proliferation in a dose-dependent manner at 48h with IC50 values of 17.34 µM and 12.63 µM, respectively. J2 inhibited the refolding process of denatured luciferase as an Hsp27 inhibitor. Molecular docking calculation was carried out to determine the interaction between Hsp27 and J2. The results indicated that J2 selectively binds to the phosphorylation site of the Hsp27 and inhibits the phosphorylation process of Hsp27. To determine the apoptotic potential of the J2 compound against ovarian cancer cells, the mRNA expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, p53, Apaf-1, Cas-3, Cas-8, Cas-9, TNF-α, DAXX, and Ask-1) were measured using RT-PCR. While J2 increased the expressions of apoptotic genes, it decreased the expressions of anti-apoptotic genes. Further, the J2 compound increased Cas-3 activity in SKOV3 and OVCAR-3 at 5.52 and 4.12 folds, respectively. These results confirm that J2 has great potential and significance in the stimulation of apoptosis in ovarian cancer cells as an Hsp27 inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.