Abstract

Alzheimer's disease (AD) is a common, chronic neurodegenerative disease that is thought to be caused by the neurotoxic effect of the Amyloid beta peptides (Abeta). We have hypothesized that the intrinsic Abeta calcium channel activity of the oligomeric Abeta polymer may be responsible for the neurotoxic properties of Abeta, and that Abeta channel blockers may be candidate AD therapeutics. As a consequence of a rational search paradigm based on the model structure of the Abeta channel, we have identified two compounds of interest: MRS2481 and an enatiomeric species, MRS2485. These are amphiphilic pyridinium salts that both potently block the Abeta channel and protect neurons from Abeta toxicity. Both block the Abeta channel with similar potency (approximately 500 nM) and efficacy (100%). However, we find that inhibition by MRS2481 is easily reversible, whereas inhibition by MRS2485 is virtually irreversible. We suggest that both species deserve consideration as candidates for Alzheimer's disease drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.