Abstract

Species that live in degraded habitats often show signs of physiological stress. Glucocorticoid hormones (e.g., corticosterone and cortisol) are often assessed as a proxy of the extent of physiological stress an animal has experienced. Our goal was to quantify glucocorticoids in free-ranging small mammals in fragments of Interior Atlantic Forest. We extracted glucocorticoids from fur samples of 106 small mammals (rodent genera Akodon and Oligoryzomys, and marsupial genera Gracilinanus and Marmosa) from six forest fragments (2–1200 ha) in the Reserva Natural Tapytá, Caazapá Department, Paraguay. To our knowledge, this is the first publication of corticosterone and cortisol levels for three of the four sampled genera (Akodon, Oligoryzomys, and Marmosa) in this forest system. We discovered three notable results. First, as predicted, glucocorticoid levels were higher in individuals living withing small forest fragments. Second, animals captured live using restraint trapping methods (Sherman traps) had higher glucocorticoid levels than those animals captured using kill traps (Victor traps), suggesting that hair glucocorticoid measures can reflect acute stress levels in addition to long-term glucocorticoid incorporation. These acute levels are likely due to urinary steroids diffusing into the hair shaft. This finding raises a concern about the use of certain trapping techniques in association with fur hormone analysis. Finally, as expected, we also detected genus-specific differences in glucocorticoid levels, as well as cortisol/corticosterone ratios.

Highlights

  • Habitat loss and fragmentation are primary threats to ­biodiversity[1,2]

  • The 106 individuals sampled across the six forest fragments represented five species of rodents (Akodon montensis, A. paranaensis, Oligoryzomys mattogrossae, O. flavescence, and O. nigripes) and two species of marsupials (Gracilinanus agilis, Marmosa paraguayana) in four genera

  • Individuals were primarily trapped on the ground (84.0%, n = 89, including pitfall captures), followed by trapped in trees approximately 1.5 m from the ground (16.0%, n = 17), but the percentage of captures on the ground ranged from 100.0% for Akodon to 83.3% for Oligoryzomys to 28.6% for G. agilis to 0.0% for M. paraguayana

Read more

Summary

Introduction

Habitat loss and fragmentation are primary threats to ­biodiversity[1,2]. It is estimated that at least 75% of Earth’s non-ice terrestrial surfaces have been modified by ­humans[3]. Higher levels of glucocorticoids (energy-mobilizing hormones whose circulating concentrations are often raised during times of stress) are not always clearly attributed to animals in forest ­fragments[14,15], suggesting that physiological responses are complex and ­varied[16,17,18]. Experimental manipulation of glucocorticoids in wild animals result in inconsistent effects on physiology, behavior, and fitness; these differences in responses could be due to differences in species, sex, age class, environmental conditions, and m­ ethodologies[26]. Understanding the glucocorticoid response of a variety of organisms (from the individual to species level) is important for gaining insight on the effects of environmental changes on the stress response of various o­ rganisms[16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call