Abstract

Reactive oxygen species (ROS) are byproducts generated during normal cellular metabolism, and redox states have been shown to influence stem cell self-renewal and lineage commitment across phyla. However, the downstream effectors of ROS signaling that control stem cell behavior remain largely unexplored. Here, we used the Drosophila testis as an in vivo model to identify ROS-induced effectors that are involved in the differentiation process of germline stem cells (GSCs). In the Affymetrix microarray analysis, 152 genes were either upregulated or downregulated during GSC differentiation induced by elevated levels of ROS, and a follow-up validation of the gene expression by qRT-PCR showed a Spearman's rho of 0.9173 (P<0.0001). Notably, 47 (31%) of the identified genes had no predicted molecular function or recognizable protein domain. These suggest the robustness of this microarray analysis, which identified many uncharacterized genes, possibly with an essential role in ROS-induced GSC differentiation. We also showed that maf-S is transcriptionally downregulated by oxidative stress, and that maf-S knockdown promotes GSC differentiation but Maf-S overexpression conversely results in an over-growth of GSC-like cells by promoting the mitotic activity of germ cell lineage. Together with the facts that Maf-S regulates ROS levels and genetically interacts with Keap1/Nrf2 in GSC maintenance, our study suggests that Maf-S plays an important role in the Drosophila testis GSC maintenance by participating in the regulation of redox homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.