Abstract

One main obstacle to the implementation of low-temperature district heating is the existing infrastructure along with consumer heating devices that were usually designed for higher operating temperatures. If a DHN is installed for a new urban area, these obstacles can be avoided. This study presents an analysis of alternative heat supply scenarios for the newly developing city subdistrict of Kopli (Tallinn, Estonia). The following scenarios were analysed from economic and environmental aspects: scenario A-connection to the existing DHN (supply/return temperatures 95 °C/55 °C, gas-fired boiler house); scenario B-small local DHN (80 °C/40 °C, small gas-fired boiler house); scenario C-small local LTDHN (60 °C/35 °C, small gas-fired boiler house, integrated large-scale heat pump using seawater as heat source). The results of the study have shown that the primary energy consumption per 1 MWh of heat consumed is 1.33 MWh for scenario A, 1.15 MWh for scenario B, and 0.71 MWh for scenario C. To achieve IRR = 7%, a 4 year discounted payback period was calculated for scenario B, with the NPV of 1.000.000 EUR after the period of 10 years. For scenario C, the payback period is more than 5 years, and the NPV is 2.600.000 EUR after 10 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.