Abstract

The small heat shock protein HspB1 (Hsp27) is abundantly expressed in embryonic muscle tissues of a wide variety of vertebrate species. However, the functional significance of this expression pattern is not well established. In the present study, we observed specific, high level expression of HspB1 protein and an HspB1 gene reporter in developing craniofacial muscles of the zebrafish, Danio rerio, and examined the consequences of reducing HspB1 expression to the development and growth of these muscles. Quantitative morphometric analyses revealed a reduction in the cross-sectional area of myofibers in embryos expressing reduced HspB1 levels by as much as 47% compared to controls. In contrast, we detected no differences in the number of myofibrils or associated nuclei, nor the number, size or development of chondrocytes in surrounding tissues. We also did not detect changes to the overall organization of sarcomeres or myofibrils in embryos expressing reduced levels of HspB1. Together our results reveal a critical role for HspB1 in the growth of myofibrils and provide new insight into the mechanism underlying its developmental function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.