Abstract

Rac1 is a small GTPase coordinating diverse cellular functions such as cell polarity, vesicular trafficking, the cell cycle and transcriptional dynamics in many organisms. In this study, we investigate the biological functions of VdRac1, a Rac1 homolog in the soil-borne, wilt-causing fungus Verticillium dahliae. The VdRac1 gene was deleted in a V. dahliae virulence strain Vd8 isolated from a local cotton cultivar. ΔVdrac1 mutants display drastic reduction in colony expansion and form compact, convoluted colonies, show hyper-branching, loss of polarity and ability to penetrate, leading to severely reduced virulence. The p21-activated kinase Cla4 (named as VdCla4 in V. dahliae) null mutants ΔVdcla4 share identical phenotypes with ΔVdrac1. Yeast two-hybrid studies prove that VdCla4 is an effector of VdRac1. Localizations of actin and reactive oxygen species (ROS) in ΔVdrac1 and ΔVdcla4 compared with the corresponding wild-type strain reveal that VdRac1 and VdCla4 play a primary role in polarized hyphal growth via organization of ROS and play only a minor role in the organization of actin. The Vdrac1 and Vdcla4 null mutants are defective in conidiation and trace elements can partially compensate for the defect. Our data demonstrate that VdRac1 regulates polarized growth and pathogenicity by interacting with its effector VdCla4 in V. dahliae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.