Abstract
Dozens of linear graben that are about 10–400m wide and less than 1km long are recognized in the southeastern continuous ejecta deposits of Copernicus, supporting that Copernican-aged tectonism has occurred on the Moon. Fault geometry analysis suggests that the bounding faults of the graben have formed within the ejecta deposits. The graben are exclusively located on a local high-relief area, but they are not formed by mass wasting, because the topographic slope is substantially less than the repose angle of typical lunar materials, and no other extensional structures are visible on similar high-relief areas at the continuous ejecta deposits of Copernicus. The orientations of the graben all point to the center of Copernicus, but the topography of Copernicus is little compensated after formation, suggesting that the graben were not caused by possible crustal isostatic readjustment. This graben system is one of the three examples on the Moon that were interpreted to be caused by shallow igneous intrusions in the format of laccoliths. The currently available GRAIL gravity data have a lower spatial resolution than the size of the graben, so the gravity data cannot resolve the hypothesized sub-kilometer-scale laccoliths beneath the graben. While laccolith intrusion to a depth of about 80m is required to explain the formation of this graben system, the laccolith intrusion scenario is not consistent with the geological context of the graben. A compressional structure is visible close to the graben system, and their spatial configuration and similar preservation states are consistent with being generically related. A close examination of the other two sets of graben that were also interpreted to have no associated compressional structures actually reveals spatially-related lobate scarps and wrinkle ridges in the vicinity. Therefore, shallow igneous intrusion is not plausible or necessary to explain to formation of Copernican-aged graben on the Moon, and they are most likely formed by the late-stage global contraction of the Moon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.