Abstract

Abstract Let $k_i\ (i=1,2,\ldots ,t)$ be natural numbers with $k_1>k_2>\cdots >k_t>0$, $k_1\geq 2$ and $t<k_1.$ Given real numbers $\alpha _{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$, we consider polynomials of the shape $$\begin{align*} &\varphi_i(x)=\alpha_{1i}x^{k_1}+\alpha_{2i}x^{k_2}+\cdots+\alpha_{ti}x^{k_t},\end{align*}$$and derive upper bounds for fractional parts of polynomials in the shape $$\begin{align*} &\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),\end{align*}$$by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our results improve on earlier Theorems of Baker (2017).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call