Abstract

AbstractFish larvae are rarely a major driver of fish mortality, but tunas can produce large batches of larvae that rapidly develop the capacity to kill other fish. We combine a model for the killing potential from Atlantic bluefin tuna (BFT) larvae on larval albacore (ALB) with field observations at a major spawning ground. Both species spawn from June to August, but BFT has a narrow spawning peak at the beginning of the season that results in priority effects. Our model shows that, following a recent stock recovery, BFT larvae have increased their killing pressure, leaving areas of up to 1000 km2 with < 1% chance of ALB daily survival. Such increase in killing pressure suggests larval ALB has reduced chances to survive; yet in large areas with few BFT, other drivers of early survival prevail over BFT predation. This shows that strong predatory interactions can occur during larval stages in some fishes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.