Abstract
The objective of this work is to propose an imaging sequence based upon the wavelet encoding approach to provide MRI images free from folding artifacts, in the small field of view (FOV) regime, such as dynamic magnetic resonance imaging (MRI) studies. The method consists of using a 2D spatially selective RF excitation pulse inserted into a gradient- echo pulse sequence to excite spins within a determined plane where wavelet encoding is achieved in one direction and slice selection is performed in the second direction. Wavelet encoding allows for spatially localized excitation and consequently restricts the spins excited within a reduced FOV. It consists of varying, according to a predetermined scheme, the width and position of the profile of the so-called fast RF pulse of the 2D RF excitation pulse, to obey wavelet encoding translation and dilation conditions. This sequence is implemented on a 3 Tesla whole body Siemens scanner. Compared to Fourier encoding, the proposed technique tested on phantoms with different shapes and structures, is able to provide gradient-echo reduced FOV images free from aliased signals. Wavelet encoding is suitable for small FOV imaging in dynamic MRI studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic Resonance Materials in Physics, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.