Abstract
This article proposes a novel data-driven gap metric fault detection and isolation (FDI) approach for small multiplicative fault. First, the scheme of model-based fault classification and gradation is developed by means of the gap metric. Subsequently, the data-driven gap metric is utilized to detect a small fault via the mechanism model. Furthermore, fault detectability criterion is derived with the help of the developed fault detectability indicator. The relationship between fault detectability indicator and fault detection index is then investigated to analyze fault detection performance. To enhance fault isolability, a solution of appropriate fault cluster center model and radius is provided under the condition of fault isolation. Third, a gap metric fault-tolerant control strategy is exploited to guarantee system stability when a large fault is diagnosed by the developed FDI approach. The speed regulation of dc-motor and dc–dc converter are used for simulation and experiment verifications. Moreover, the comparison results and Monte Carlo simulation demonstrate the superiority and reliability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.