Abstract
Droplet bouncing on liquid surfaces frequently occurs for low-Weber-number impacts. Previous studies typically used large droplets with oscillation initiated by their creation process but without determining the effects of these oscillations. Here, we use small droplets, providing the means to reduce oscillations to show that the probability of the droplet bounce does not depend on the droplet oscillations. The time from the moment of contact to the maximum penetration depth was found to be independent of the Weber number for droplets of fixed diameter but increased with an increase in diameter. Both the maximum penetration depth and the maximum rebound height increased monotonically with the Weber number. A simple model predicting the maximum penetration depth was proposed and validated through comparison with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.