Abstract

The 2 C. elegans homologs of Atg8, LGG-1 and LGG-2, show differential function in the degradation of protein aggregates during embryogenesis. LGG-1 is essential for the degradation of various protein aggregates, while LGG-2 has cargo-specific and developmental stage-specific roles. LGG-1 and LGG-2 differentially interact with autophagy substrates and ATG proteins. LGG-1 and LGG-2 possess 2 hydrophobic pockets, the W-site and the L-site, which recognize the LIR motif in Atg8-binding proteins. The plasticity of the W-site and the size and shape of the L-site differ between LGG-1 and LGG-2, thus determining their preferences for distinct LIR motifs. The N-terminal tails of LGG-1 and LGG-2 adopt unique closed and open conformations, respectively, which may result in distinct membrane tethering and fusion activities. LGG-1 and LGG-2 have different affinities for ATG-7 and ATG-3, and lipidation of LGG-2 is regulated by levels of lipidated LGG-1. Taken together, the structural differences between LGG-1 and LGG-2 provide insights into their differential functions in the aggrephagy pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call