Abstract
We show that arithmetic lattices in textrm{SL}_{2}(mathbb {R}), stemming from the proper units of an Eichler order in an indefinite quaternion algebra over mathbb {Q}, admit a ‘small’ covering set. In particular, we give bounds on the diameter if the quotient space is co-compact. Consequently, we show that these lattices admit small generators. Our techniques also apply to definite quaternion algebras where we show Ramanujan-strength bounds on the diameter of certain Ramanujan graphs without the use of the Ramanujan bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.