Abstract
The aim of this article is to demonstrate how the vector field method of Klainerman can be adapted to the study of transport equations. After an illustration of the method for the free transport operator, we apply the vector field method to the Vlasov-Poisson system in dimension 3 or greater. The main results are optimal decay estimates and the propagation of global bounds for commuted fields associated with the conservation laws of the free transport operators, under some smallness assumption. Similar decay estimates had been obtained previously by Hwang, Rendall and Velazquez using the method of characteristics, but the results presented here are the first to contain the global bounds for commuted fields and the optimal spatial decay estimates. In dimension 4 or greater, it suffices to use the standard vector fields commuting with the free transport operator while in dimension 3, the rate of decay is such that these vector fields would generate a logarithmic loss. Instead, we construct modified vector fields where the modification depends on the solution itself. The methods of this paper, being based on commutation vector fields and conservation laws, are applicable in principle to a wide range of systems, including the Einstein-Vlasov and the Vlasov-Nordstrom system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.