Abstract
<p style='text-indent:20px;'>In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schrödinger equation (IBNLS)</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta^{2} u = \lambda |x|^{-b}|u|^{\sigma}u, u(0) = u_{0} \in H^{s} (\mathbb R^{d}), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda \in \mathbb R $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ d\in \mathbb N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 0&lt;s&lt;\min \{2+\frac{d}{2}, \frac{3}{2}d\} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ 0&lt;b&lt;\min\{4, d, \frac{3}{2}d-s, \frac{d}{2}+2-s\} $\end{document}</tex-math></inline-formula>. Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is globally well-posed in <inline-formula><tex-math id="M5">\begin{document}$ H^{s}(\mathbb R^{d}) $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M6">\begin{document}$ \frac{8-2b}{d}&lt;\sigma&lt; \sigma_{c}(s) $\end{document}</tex-math></inline-formula> and the initial data is sufficiently small, where <inline-formula><tex-math id="M7">\begin{document}$ \sigma_{c}(s) = \frac{8-2b}{d-2s} $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M8">\begin{document}$ s&lt;\frac{d}{2} $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M9">\begin{document}$ \sigma_{c}(s) = \infty $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M10">\begin{document}$ s\ge \frac{d}{2} $\end{document}</tex-math></inline-formula>.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.