Abstract

Small-conductance Ca2+-activated potassium (SK) channels play complex roles in cardiac arrhythmogenesis. SK channels colocalize with L-type Ca2+ channels, yet how this colocalization affects cardiac arrhythmogenesis is unknown. The purpose of this study was to investigate the role of colocalization of SK channels with L-type Ca2+ channels in promoting J-wave syndrome and ventricular arrhythmias. We carried out computer simulations of single-cell and tissue models. SK channels in the model were assigned to preferentially sense Ca2+ in the bulk cytosol, subsarcolemmal space, or junctional cleft. When SK channels sense Ca2+ in the bulk cytosol, the SK current (ISK) rises and decays slowly during an action potential, the action potential duration (APD) decreases as the maximum conductance increases, no complex APD dynamics and phase 2 reentry canbe induced by ISK. When SK channels sense Ca2+ in the subsarcolemmal space or junctional cleft, ISK can rise and decay rapidly during an action potential in a spike-like pattern because of spiky Ca2+ transients in these compartments, which can cause spike-and-dome action potential morphology, APD alternans, J-wave elevation, and phase 2 reentry. Our results can account for the experimental finding that activation of ISK induced J-wave syndrome and phase 2 reentry in rabbit hearts. Colocalization of SK channels with L-type Ca2+ channels so that they preferentially sense Ca2+ in the subsarcolemmal or junctional space may result in a spiky ISK, which can functionally play a similar role of the transient outward K+ current in promoting J-wave syndrome and ventricular arrhythmias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.