Abstract

In hippocampal pyramidal neurons, voltage-gated Ca(2+) channels open in response to action potentials. This results in elevations in the intracellular concentration of Ca(2+) that are maximal in the proximal apical dendrites and decrease rapidly with distance from the soma. The control of these action potential-evoked Ca(2+) elevations is critical for the regulation of hippocampal neuronal activity. As part of Ca(2+) signaling microdomains, small-conductance Ca(2+)-activated K(+) (SK) channels have been shown to modulate the amplitude and duration of intracellular Ca(2+) signals by feedback regulation of synaptically activated Ca(2+) sources in small distal dendrites and dendritic spines, thus affecting synaptic plasticity in the hippocampus. In this study, we investigated the effect of the activation of SK channels on Ca(2+) transients specifically induced by action potentials in the proximal processes of hippocampal pyramidal neurons. Our results, obtained by using selective SK channel blockers and enhancers, show that SK channels act in a feedback loop, in which their activation by Ca(2+) entering mainly through L-type voltage-gated Ca(2+) channels leads to a reduction in the subsequent dendritic influx of Ca(2+). This underscores a new role of SK channels in the proximal apical dendrite of hippocampal pyramidal neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.