Abstract

Homoleptic benzyl derivatives of titanium and zirconium have been grafted onto silica that was dehydroxylated at 200 and 700 °C, thereby affording bi-grafted and mono-grafted single-site species, respectively, as shown by a combination of experimental techniques (IR, MAS NMR, EXAFS, and elemental analysis) and theoretical calculations. Marked differences between these compounds and their neopentyl analogues are discussed and rationalized by using DFT. These differences were assigned to the selectivity of the grafting process, which, depending on the structure of the molecular precursors, led to different outcomes in terms of the mono- versus bi-grafted species for the same surface concentration of silanol species. The benzylzirconium derivatives were active towards ethylene polymerization in the absence of an activator and the bi-grafted species displayed higher activity than their mono-grafted analogues. In contrast, the benzyltitanium and neopentylzirconium counterparts were not active under similar reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call