Abstract

The use of organic molecules as photosensitizers in photoredox catalysis is an attractive research field as it has the potential to replace conventionally used photosensitizers, which are based on rare metals. In the context of light‐driven hydrogen evolution catalysis, the radical formation of two perylene monoimide dyes (PMIs) was studied by means of electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The PMIs were reduced and oxidized both photochemically and electrochemically to study the changes in absorption and EPR signature. A distinct differentiation between the two PMIs as well as a comparison between the oxidative and reductive processes can be made by EPR measurements. UV/Vis measurements showed different features under redox conditions. This study addresses a gap in understanding the radical intermediate formation during photocatalytic processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call