Abstract
This paper presents a novel system to compute the automated classification of wireless capsule endoscope images. Classification is achieved by a classical statistical approach, but novel features are extracted from the wavelet domain and they contain both color and texture information. First, a shift-invariant discrete wavelet transform (SIDWT) is computed to ensure that the multiresolution feature extraction scheme is robust to shifts. The SIDWT expands the signal (in a shift-invariant way) over the basis functions which maximize information. Then cross-co-occurrence matrices of wavelet subbands are calculated and used to extract both texture and color information. Canonical discriminant analysis is utilized to reduce the feature space and then a simple 1D classifier with the leave one out method is used to automatically classify normal and abnormal small bowel images. A classification rate of 94.7% is achieved with a database of 75 images (41 normal and 34 abnormal cases). The high success rate could be attributed to the robust feature set which combines multiresolutional color and texture features, with shift, scale and semi-rotational invariance. This result is very promising and the method could be used in a computer-aided diagnosis system or a content-based image retrieval scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.