Abstract

Physical disintegration of biochar has been postulated to determine the persistence and mobility in soil of this recalcitrant carbon pool. Therein, freeze–thaw cycling can induce substantial physical stress to biochars. We here investigated the physical disintegration and subsequent mobilisation of five different biochars under “realistic worst-case scenarios” in a laboratory soil column setup as well as in shaking and sonication batch experiments. The mobilization of carbon from biochar particles (0.25–1 mm) was investigated in the absence of clay at a pH of 6.3 with and without 80 freeze–thaw cycles. The small biochar particles used in this study did not strongly disintegrate after freeze–thaw cycling, possibly because of freezing point depression in biochar micropores. Our results in comparison with findings in literature suggest that freeze–thaw-induced physical disintegration of biochar is a process more pronounced for large biochar particles containing substantial meso- and macropores. Biochars with larger ash fractions disintegrated more, presumably because of the ash-associated formation of unstable cavities within the biochar. Physical stability of biochars produced from the same feedstock at different pyrolysis temperatures decreased with increasing aromaticity, which may be linked to a higher rigidity of more aromatic structures. Moisture content in the soil increased carbon mobilization from biochar more than physical stress such as freeze–thaw cycling. The physical disintegration of biochar and subsequent mobilization of micro-and nanosized carbon should thus be considered of minor relevance and is often not a driving factor for biochar stability in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call