Abstract

Naphthalene diimide (NDI)-based conjugated polymers have been widely used as the nonfullerene electron acceptor for all-polymer solar cells (all-PSCs), but their low absorption coefficient in the near-infrared (NIR) region severely limits the light harvesting ability in solar cells and hence lowers their photovoltaic performance. In this work, two narrow band gap donor–acceptor conjugated polymers based on boron dipyrromethene (BODIPY) as the electron-deficient unit were developed as the electron donor to combine with a NDI-polymer acceptor in order to significantly improve the photoresponse in the NIR region. More importantly, we found that methyl substitution on the BODIPY segment played an important role in charge transport in these polymers. When methyl units were attached to the α-position of BODIPY, the polymer PMBBDT exhibited high-lying energy levels, improved crystallinity, and dramatically high hole mobility compared to the polymer PBBDT without methyl substitution. Consequently, the power conversion efficiencies (PCEs) could be enhanced from 0.32% for PBBDT- to 5.8% for PMBBDT-based all-PSCs, and the photoresponse covered from 300 to 900 nm. Our results demonstrate that methyl-substituted BODIPY-based conjugated polymers are promising candidates to solve the NIR absorption issue in NDI polymers and, therefore, can be potentially used to further boost the PCEs of all-PSCs similar with organic solar cells based on NIR-fused ring electron acceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call