Abstract

SummaryThe Fay–Herriot model is a standard model for direct survey estimators in which the true quantity of interest, the superpopulation mean, is latent and its estimation is improved through the use of auxiliary covariates. In the context of small area estimation, these estimates can be further improved by borrowing strength across spatial regions or by considering multiple outcomes simultaneously. We provide here two formulations to perform small area estimation with Fay–Herriot models that include both multivariate outcomes and latent spatial dependence. We consider two model formulations. In one of these formulations the outcome‐by‐space dependence structure is separable. The other accounts for the cross dependence through the use of a generalized multivariate conditional autoregressive (GMCAR) structure. The GMCAR model is shown, in a state‐level example, to produce smaller mean square prediction errors, relative to equivalent census variables, than the separable model and the state‐of‐the‐art multivariate model with unstructured dependence between outcomes and no spatial dependence. In addition, both the GMCAR and the separable models give smaller mean squared prediction error than the state‐of‐the‐art model when conducting small area estimation on county level data from the American Community Survey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.