Abstract
ABSTRACTData from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004–2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.