Abstract
The government has so far focused on a monetary approach to overcoming poverty, while poverty is multidimensional. Holistic and accurate poverty indicators are needed as material for policy formulation, such as the Multidimensional Poverty Index (IKM), which is calculated from raw data from the National Socioeconomic Survey (SUSENAS). However, the direct estimation of the multidimensional poverty headcount (AKM) is only accurate at the provincial level, as seen from the relative standard error (RSE) of several districts and cities, which is still above 25 percent. Increasing the sample size requires time, effort, and cost, so the Small Area Estimation (SAE) method can be an alternative. Apart from using official statistics for accompanying variables, satellite imagery has the advantage of being up-to-date and available up to a granular level. This study aims to estimate the AKM at the district/city level in East Java Province by utilizing satellite imagery and official statistics in SAE. The results showed that SAE HB Beta-logistics, with the accompanying variables combined with satellite imagery and official statistics, has a higher accuracy than direct estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of The International Conference on Data Science and Official Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.