Abstract

In response to microbial infection, neutrophiles promote the assembly of the NADPH oxidase complex in order to produce superoxide anions. This reaction is activated by the association of cytosolic factors, p47(phox), p67(phox), p40(phox), and a small G protein Rac with the membranous heterodimeric flavocytochrome b(558), composed of gp91(phox) and p22(phox). In the activation process, p47(phox) plays a central role as the target of phosphorylations and as a scaffolding protein conducting the translocation and assembly of cytosolic factors onto the membranous components. The PX and tandem SH3s of p47(phox) have been highlighted as being key determinants for the interaction with membrane lipids and the p22(phox) component, respectively. In the resting state, the two corresponding interfaces are thought to be masked allowing its cytoplasmic localization. However, the resting state modular organization of p47(phox) and its autoinhibition mode are still not fully understood despite available structural information on separate modules. More precisely, it raises the question of the mutual arrangement of the PX domain and the tandem SH3 domains in the resting state. To address this question, we have engaged a study of the entire p47(phox) molecule in solution using small-angle X-ray scattering. Despite internal autoinhibitory interactions, p47(phox) adopts an extended conformation. First insights about the domain arrangement in whole p47(phox) can be derived. Our data allow to discard the usual representation of a globular and compact autoinhibited resting state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.