Abstract

Negatively charged analytes must be derivatized prior to gas chromatography-isotope ratio mass spectrometry (GC-IRMS), with stringent control of isotope fractionation. Current methods require offline sample preparation. This study tests for the first time trimethylsulfonium hydroxide (TMSH) as online methylation agent prior to isotope analysis, addressing the herbicides bentazone and MCPA. Fully automated derivatization was achieved in a temperature-programmable GC injector, where reactants were injected into a packed liner, solvents were removed by split flow, and subsequent flash heating triggered the derivatization, thereby transferring derivatives onto the chromatographic column. Stoichiometric addition of TMSH resulted in complete conversion giving accurate and reproducible nitrogen isotope values of bentazone. In contrast, reproducible carbon isotope analysis required TMSH in > or = 250-fold excess. Contrary to expectations, delta(13)C values became more negative at smaller TMSH excess. This indicates that elevated methyl group concentrations in the pore space of the injection liner facilitated close-to-equilibrium rather than kinetic isotope fractionation resulting in reproducible derivatization conditions. delta(13)C results under these conditions compared favorably with liquid chromatography-IRMS: low standard deviations (0.3 per thousand for GC-IRMS, 0.1 per thousand for LC-IRMS) and a comparable offset of 1 per thousand compared to elemental analyzer-IRMS demonstrate that both methods represent expedient ways for online isotope analysis of anionic target compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call