Abstract

Runx2 is a bone-specific transcription factor that plays a critical role in bone development, postnatal bone formation, and chondrocyte maturation. The protein levels of Runx2 are regulated by the ubiquitin-proteasome pathway. In previous studies we discovered that E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) induces Runx2 degradation in a ubiquitin-proteasome-dependent manner, and Smurf1 plays an important role in osteoblast function and bone formation. In the present studies we investigated the molecular mechanism of Smurf1-induced Runx2 degradation. Smurf1 interacts with the PY motif of substrate proteins, and a PY motif has been identified in the C terminus of the Runx2 protein. To determine whether Smurf1 induces Runx2 degradation through the interaction with the PY motif of Runx2, we created a mutant Runx2 with a PY motif deletion and found that Smurf1 retained some of its ability to induce the degradation of the mutant Runx2, suggesting that Smurf1 could induce Runx2 degradation through an indirect mechanism. Smurf1 has been shown to interact with Smads 1, 5, 6, and 7, and Smads 1 and 5 also interact with Runx2. In the present studies we found that Smads 1 and 5 had no effect on Smurf1-induced Runx2 degradation. Although Smads 6 and 7 bind Smurf1, it is not known if Smads 6 or 7 interacts with Runx2 and mediate Runx2 degradation. We performed immunoprecipitation assays and found that Smad6 but not Smad7 interacts with Runx2. Smad6 enhances Smurf1-induced Runx2 degradation in an ubiquitin-proteasome-dependent manner. These results demonstrate that in addition to its interaction with the PY motif of Runx2, Smurf1 induces Runx2 degradation in a Smad6-dependent manner. Smurf1-induced Runx2 degradation serves as a negative regulatory mechanism for the BMP-Smad-Runx2 signaling pathway.

Highlights

  • Runx2 (Runt-related gene 2) is a bone-specific transcription factor that belongs to the runt-domain gene family

  • In previous studies we discovered that E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) induces Runx2 degradation in a ubiquitin-proteasome-dependent manner, and Smurf1 plays an important role in osteoblast function and bone formation

  • In the present studies we have examined the effect of Smurf1 on Runx2 degradation using COS cells

Read more

Summary

Introduction

Runx (Runt-related gene 2) is a bone-specific transcription factor that belongs to the runt-domain gene family. In transgenic mice overexpressing a dominant-negative Runx DNA binding domain (mRunx2) driven by the osteocalcin promoter, skeletons are normal at birth, but the mice suffer from osteopenia due to a decrease in bone formation rate 3 weeks after birth [11]. These results indicate that Runx plays a crucial role in bone development and in postnatal bone formation. Supporting evidence includes histomorphologic findings showing an alteration of chondrocyte maturation in long bones of Runx null mutant mice as well as cell culture studies indicating that Runx is a positive regulator for chondrocyte differentiation [12,13,14]. In a series of experiments using COS cells as a cell culture model, which permit relatively high levels of protein expression (22, 26 –28) and have lower Smad expression, we investigated the molecular mechanism of Smurf1-induced Runx degradation and found that Smad interacts with Runx and mediates Smurf1-induced Runx degradation in a PY motif-independent manner

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.